Inductance
Inductance is the name given to the property of a component that opposes the change of current flowing through it and even a straight piece of wire will have some inductance. Inductors do this by generating a self-induced emf within itself as a result of their changing magnetic field. When the emf is induced in the same circuit in which the current is changing this effect is called Self-induction, ( L ) but it is sometimes commonly called back-emf as its polarity is in the opposite direction to the applied voltage.
When the emf is induced into an adjacent component situated within the same magnetic field, the emf is said to be induced by Mutual-induction, ( M ) and mutual induction is the basic operating principal of transformers, motors, relays etc. Self inductance is a special case of mutual inductance, and because it is produced within a single isolated circuit we generally call self-inductance simply, Inductance. The basic unit of inductance is called the Henry, ( H ) after Joseph Henry, but it also has the units of Webers per Ampere (1 H = 1 Wb/A).
Lenz's Law tells us that an induced emf generates a current in a direction which opposes the change in flux which caused the emf in the first place, the principal of action and reaction. Then we can accurately define Inductance as being "a circuit will have an inductance value of one Henry when an emf of one volt is induced in the circuit were the current flowing through the circuit changes at a rate of one ampere/second". In other words, a coil has an inductance of one Henry when the current flowing through it changes at a rate of one ampere/second inducing a voltage of one volt in it and this definition can be presented as:
induktansi
Induktansi adalah nama yang diberikan untuk properti dari komponen yang menentang perubahan arus yang mengalir melalui itu dan bahkan potongan lurus kawat akan memiliki beberapa induktansi. Induktor melakukan ini dengan menghasilkan emf disebabkan diri dalam dirinya sendiri sebagai akibat dari medan magnet mereka berubah. Ketika emf yang diinduksi di sirkuit yang sama di mana saat ini berubah efek ini disebut Self-induksi, (L) tapi kadang-kadang biasa disebut back-emf sebagai polaritas adalah dalam arah yang berlawanan dengan tegangan yang diberikan.
Ketika emf yang diinduksi menjadi komponen yang berdekatan terletak dalam medan magnet yang sama, ggl yang dikatakan disebabkan oleh Reksa-induksi, (M) dan saling induksi adalah kepala operasi dasar transformator, motor, relay dll Diri induktansi adalah kasus khusus dari induktansi, dan karena diproduksi dalam sirkuit terisolasi tunggal umumnya kita sebut induktansi diri sederhana, Induktansi. Unit dasar induktansi disebut Henry, (H) setelah Joseph Henry, tetapi juga memiliki unit Webers per Ampere (1 H = 1 Wb / A).
Hukum Lenz memberitahu kita bahwa ggl induksi menghasilkan arus dalam arah yang menentang perubahan fluks yang menyebabkan emf di tempat pertama, prinsip aksi dan reaksi. Kemudian kita secara akurat dapat menentukan Induktansi sebagai "sirkuit akan memiliki nilai induktansi dari satu Henry ketika ggl satu volt diinduksi di sirkuit yang saat ini mengalir melalui perubahan sirkuit pada tingkat satu ampere / detik". Dengan kata lain, sebuah kumparan memiliki induktansi dari satu Henry ketika arus yang mengalir melalui perubahan pada tingkat satu ampere / detik menginduksi tegangan satu volt di dalamnya dan definisi ini dapat disajikan sebagai:
Inductance
Inductance, L is actually a measure of an inductors "resistance" to the change of the current flowing through the circuit and the larger is its value in Henries, the lower will be the rate of current change.
We know from the previous tutorial about the Inductor, that inductors are devices that can store their energy in the form of a magnetic field. Inductors are made from individual loops of wire combined to produce a coil and if the number of loops within the coil are increased, then for the same amount of current flowing through the coil, the magnetic flux will also increase. So by increasing the number of loops or turns within a coil, increases the coils inductance. Then the relationship between self-inductance, ( L ) and the number of turns, ( N ) and for a simple single layered coil can be given as:
Self Inductance of a Coil
Self_Inductance_of_a_Coil
Where:
L is in Henries
N is the Number of Turns
Φ is the Magnetic Flux Linkage
Ι is in Amperes
This expression can also be defined as the flux linkage divided by the current flowing through each turn. This equation only applies to linear magnetic materials.
Example No1
A hollow air cored inductor coil consists of 500 turns of copper wire which produces a magnetic flux of 10mWb when passing a DC current of 10 amps. Calculate the self-inductance of the coil in milli-Henries.
Example1
Exp1
induktansi
Induktansi adalah nama yang diberikan untuk properti dari komponen yang menentang perubahan arus yang mengalir melalui itu dan bahkan potongan lurus kawat akan memiliki beberapa induktansi. Induktor melakukan ini dengan menghasilkan emf disebabkan diri dalam dirinya sendiri sebagai akibat dari medan magnet mereka berubah. Ketika emf yang diinduksi di sirkuit yang sama di mana saat ini berubah efek ini disebut Self-induksi, (L) tapi kadang-kadang biasa disebut back-emf sebagai polaritas adalah dalam arah yang berlawanan dengan tegangan yang diberikan.
Ketika emf yang diinduksi menjadi komponen yang berdekatan terletak dalam medan magnet yang sama, ggl yang dikatakan disebabkan oleh Reksa-induksi, (M) dan saling induksi adalah kepala operasi dasar transformator, motor, relay dll Diri induktansi adalah kasus khusus dari induktansi, dan karena diproduksi dalam sirkuit terisolasi tunggal umumnya kita sebut induktansi diri sederhana, Induktansi. Unit dasar induktansi disebut Henry, (H) setelah Joseph Henry, tetapi juga memiliki unit Webers per Ampere (1 H = 1 Wb / A).
Hukum Lenz memberitahu kita bahwa ggl induksi menghasilkan arus dalam arah yang menentang perubahan fluks yang menyebabkan emf di tempat pertama, prinsip aksi dan reaksi. Kemudian kita secara akurat dapat menentukan Induktansi sebagai "sirkuit akan memiliki nilai induktansi dari satu Henry ketika ggl satu volt diinduksi di sirkuit yang saat ini mengalir melalui perubahan sirkuit pada tingkat satu ampere / detik". Dengan kata lain, sebuah kumparan memiliki induktansi dari satu Henry ketika arus yang mengalir melalui perubahan pada tingkat satu ampere / detik menginduksi tegangan satu volt di dalamnya dan definisi ini dapat disajikan sebagai:
nductance
Induktansi, L sebenarnya ukuran sebuah induktor "perlawanan" terhadap perubahan arus yang mengalir melalui rangkaian dan lebih besar nilainya di henrie, semakin rendah akan menjadi tingkat perubahan saat ini.
Kita tahu dari tutorial sebelumnya tentang induktor, yaitu induktor adalah perangkat yang dapat menyimpan energi mereka dalam bentuk medan magnet. Induktor terbuat dari loop individu kawat dikombinasikan untuk menghasilkan sebuah kumparan dan jika jumlah loop dalam kumparan meningkat, maka untuk jumlah yang sama dari arus yang mengalir melalui kumparan, fluks magnetik juga akan meningkat. Jadi dengan meningkatkan jumlah loop atau berubah dalam kumparan, meningkatkan kumparan induktansi. Maka hubungan antara self-induktansi, (L) dan jumlah putaran, (N) dan untuk yang sederhana kumparan berlapis tunggal dapat diberikan sebagai:
Induktansi diri dari Coil
Self_Inductance_of_a_Coil
dimana:
L adalah di henrie
N adalah Jumlah Turns
Φ adalah Magnetic Flux Linkage
Ι adalah dalam ampere
Ungkapan ini juga dapat didefinisikan sebagai linkage fluks dibagi dengan arus yang mengalir melalui setiap giliran. Persamaan ini hanya berlaku untuk linear bahan magnetik.
contoh No1
Sebuah pesawat buang biji induktor kumparan berongga terdiri dari 500 lilitan kawat tembaga yang menghasilkan fluks magnetik 10mWb ketika melewati arus DC dari 10 amp. Hitunglah induktansi diri kumparan di mili-henrie.
example1
exp1
Example No2
Calculate the value of the self-induced emf produced in the same coil after a time of 10mS.
Self_Induced_emf
he self-inductance of a coil or to be more precise, the coefficient of self-inductance also depends upon the characteristics of its construction. For example, size, length, number of turns etc. It is therefore possible to have inductors with very high coefficients of self induction by using cores of a high permeability and a large number of coil turns. Then for a coil, the magnetic flux that is produced in its inner core is equal to:
magnetic_flux
Where:
Φ is the magnetic flux linkage, B is the flux density, and A is the area.
If the inner core of a long solenoid with N turns/metre is hollow, "air cored", the magnetic induction in its core will is given as.
magnetic_induction
Then by substituting these expressions in the first equation above for Inductance will give us:
Inductance_ex2
By cancelling out and grouping together like terms, then the final equation for the coefficient of self-inductance for an air cored coil (solenoid) is given as:
self-inductance_for_an_air_cored_coil
Where:
L is in Henries
μο is the Permeability of Free Space (4.π.10-7)
N is the Number of turns
A is the Inner Core Area (π.r2) in m2
l is the length of the Coil in metres
As the inductance of a coil is due to the magnetic flux around it, the stronger the magnetic flux for a given value of current the greater will be the inductance. So a coil of many turns will have a higher inductance value than one of only a few turns and therefore, the equation above will give inductance L as being proportional to the number of turns squared N2. As well as increasing the number of coil turns, we can also increase inductance by increasing the coils diameter or making the core longer. In both cases more wire is required to construct the coil and therefore, more lines of force exists to produce the required back emf. The inductance of a coil can be increased further still if the coil is wound onto a ferromagnetic core, that is one made of a soft iron material, than one wound onto a non-ferromagnetic or hollow air core.
misalnya No2
Menghitung nila
i emf self-induced diproduksi di kumparan yang sama setelah waktu 10mS.
Self_Induced_emf
ia induktansi diri dari kumparan atau lebih tepatnya, koefisien induktansi diri juga tergantung pada karakteristik konstruksi. Misalnya, ukuran, panjang, jumlah putaran dll Oleh karena itu mungkin untuk memiliki induktor dengan koefisien yang sangat tinggi induksi diri dengan menggunakan core dari permeabilitas tinggi dan sejumlah besar coil bergantian. Kemudian untuk sebuah kumparan, fluks magnetik yang dihasilkan di inti adalah sama dengan:
magnetic_flux
dimana:
Φ adalah linkage fluks magnetik, B adalah densitas fluks, dan A adalah daerah.
Jika inti dari sebuah solenoid panjang dengan N berubah / meter adalah hampa, "udara buang biji", induksi magnetik di intinya akan diberikan sebagai.
magnetic_induction
Kemudian dengan menggantikan ekspresi ini dalam persamaan pertama di atas untuk Induktansi akan memberi kita:
Inductance_ex2
Dengan membatalkan dan pengelompokan bersama-sama seperti istilah, maka persamaan akhir untuk koefisien induktansi diri untuk kumparan udara buang biji (solenoid) diberikan sebagai:
self-inductance_for_an_air_cored_coil
dimana:
L adalah di henrie
μο adalah Permeabilitas Free Space (4.π.10-7)
N adalah Jumlah bergantian
A adalah Core Lokasi batin (π.r2) di m2
l adalah panjang Coil dalam meter
Sebagai induktansi dari kumparan adalah karena fluks magnetik di sekitarnya, semakin kuat fluks magnetik untuk nilai tertentu saat ini lebih besar akan induktansi. Jadi kumparan banyak berubah akan memiliki nilai induktansi yang lebih tinggi dari satu dari hanya beberapa putaran dan oleh karena itu, persamaan di atas akan memberikan induktansi L sebagai sebanding dengan jumlah putaran kuadrat N2. Serta meningkatkan jumlah kumparan bergantian, kami juga dapat meningkatkan induktansi dengan meningkatkan diameter kumparan atau membuat inti lagi. Dalam kedua kasus yang lebih kawat diperlukan untuk membangun kumparan dan karena itu, lebih garis gaya ada untuk menghasilkan emf yang diperlukan kembali. Induktansi dari kumparan dapat ditingkatkan lebih jauh lagi jika kumparan luka ke inti feromagnetik, yang merupakan salah satu yang terbuat dari bahan besi lunak, dari satu luka ke sebuah inti udara non-feromagnetik atau berongga.
If the inner core is made of some ferromagnetic material such as soft iron, cobalt or nickel, the inductance of the coil would greatly increase because for the same amount of current flow the magnetic flux would be much stronger. This is because the lines of force would be more concentrated through the ferromagnetic core material as we saw in the Electromagnets tutorial. For example, if the core material has a relative permeability 1000 times greater than free space, 1000μο such as soft iron or steel, than the inductance of the coil would be 1000 times greater so we can say that the inductance of a coil increases proportionally as the permeability of the core increases. Then for a coil wound around a former or core the inductance equation above would need to be modified to include the relative permeability μr of the new former material.
If the coil is wound onto a ferromagnetic core a greater inductance will result as the cores permeability will change with the flux density. However, depending upon the ferromagnetic material the inner cores magnetic flux may quickly reach saturation producing a non-linear inductance value and since the flux density around the coil depends upon the current flowing through it, inductance, L also becomes a function of current, i.
In the next tutorial about Inductors, we will see that the magnetic field generated by a coil can cause a current to flow in a second coil that is placed next to it. This effect is called Mutual Inductance, and is the basic operating principal of transformers, motors and generators.
- See more at: http://www.dnatechindia.com/Tutorial/Inductor/Inductor-Inductance-of-a-Coil.html#sthash.cU000h0D.dpuf
Jika inti terbuat dari beberapa bahan feromagnetik seperti besi lunak, kobalt atau nikel, induktansi dari kumparan akan sangat meningkat karena untuk jumlah yang sama dari arus fluks magnetik akan jauh lebih kuat. Hal ini karena garis-garis gaya akan lebih terkonsentrasi melalui bahan inti feromagnetik seperti yang kita lihat di tutorial elektromagnet. Sebagai contoh, jika bahan inti memiliki permeabilitas relatif 1000 kali lebih besar dari ruang bebas, 1000μο seperti besi lunak atau baja, dari induktansi dari kumparan akan 1000 kali lebih besar sehingga kita dapat mengatakan bahwa induktansi dari kumparan meningkat secara proporsional sebagai permeabilitas meningkat inti. Kemudian untuk luka melilit mantan atau inti persamaan induktansi di atas akan perlu dimodifikasi untuk menyertakan μr permeabilitas relatif dari bahan bekas baru.
Jika kumparan luka ke inti feromagnetik induktansi yang lebih besar akan menghasilkan sebagai core permeabilitas akan berubah dengan kerapatan fluks. Namun, tergantung pada bahan feromagnetik core dalam fluks magnetik dapat dengan cepat mencapai memproduksi nilai induktansi non-linear saturasi dan karena kepadatan fluks sekitar kumparan tergantung pada arus yang melalui itu, induktansi, L juga menjadi fungsi saat ini, i .
Dalam tutorial berikutnya tentang induktor, kita akan melihat bahwa medan magnet yang dihasilkan oleh kumparan dapat menyebabkan arus mengalir di kumparan kedua yang ditempatkan di samping itu. Efek ini disebut Mutual Induktansi, dan kepala operasi dasar transformator, motor dan generator.
- Lihat lebih lanjut di: http://www.dnatechindia.com/Tutorial/Inductor/Inductor-Inductance-of-a-Coil.html#sthash.cU000h0D.dpuf
When
the emf is induced into an adjacent component situated within the same
magnetic field, the emf is said to be induced by Mutual-induction, - See
more at:
http://www.dnatechindia.com/Tutorial/Inductor/Inductor-Inductance-of-a-Coil.html#sthash.cU000h0D.dpuf
Inductance
Inductance
is the name given to the property of a component that opposes the
change of current flowing through it and even a straight piece of wire
will have some inductance. Inductors do this by generating a
self-induced emf within itself as a result of their changing magnetic
field. When the emf is induced in the same circuit in which the current
is changing this effect is called Self-induction, ( L ) but it is sometimes commonly called back-emf as its polarity is in the opposite direction to the applied voltage
- See more at: http://www.dnatechindia.com/Tutorial/Inductor/Inductor-Inductance-of-a-Coil.html#sthash.cU000h0D.dpuf
Inductance
Inductance
is the name given to the property of a component that opposes the
change of current flowing through it and even a straight piece of wire
will have some inductance. Inductors do this by generating a
self-induced emf within itself as a result of their changing magnetic
field. When the emf is induced in the same circuit in which the current
is changing this effect is called Self-induction, ( L ) but it is sometimes commonly called back-emf as its polarity is in the opposite direction to the applied voltage
- See more at: http://www.dnatechindia.com/Tutorial/Inductor/Inductor-Inductance-of-a-Coil.html#sthash.cU000h0D.dpufv
Inductance
Inductance
is the name given to the property of a component that opposes the
change of current flowing through it and even a straight piece of wire
will have some inductance. Inductors do this by generating a
self-induced emf within itself as a result of their changing magnetic
field. When the emf is induced in the same circuit in which the current
is changing this effect is called Self-induction, ( L ) but it is sometimes commonly called back-emf as its polarity is in the opposite direction to the applied voltage
- See more at: http://www.dnatechindia.com/Tutorial/Inductor/Inductor-Inductance-of-a-Coil.html#sthash.cU000h0D.dpuf
Inductance
is the name given to the property of a component that opposes the
change of current flowing through it and even a straight piece of wire
will have some inductance. Inductors do this by generating a
self-induced emf within itself as a result of their changing magnetic
field. When the emf is induced in the same circuit in which the current
is changing this effect is called Self-induction, ( L ) but it is sometimes commonly called back-emf as its polarity is in the opposite direction to the applied voltage.
When the emf is induced into an adjacent component situated within the same magnetic field, the emf is said to be induced by Mutual-induction,
( M ) and mutual induction is the basic operating principal of
transformers, motors, relays etc. Self inductance is a special case of
mutual inductance, and because it is produced within a single isolated
circuit we generally call self-inductance simply, Inductance. The basic unit of inductance is called the Henry, ( H ) after Joseph Henry, but it also has the units of Webers per Ampere (1 H = 1 Wb/A).
Lenz's Law tells us that an induced emf generates a
current in a direction which opposes the change in flux which caused the
emf in the first place, the principal of action and reaction. Then we
can accurately define Inductance as being "a
circuit will have an inductance value of one Henry when an emf of one
volt is induced in the circuit were the current flowing through the
circuit changes at a rate of one ampere/second". In other
words, a coil has an inductance of one Henry when the current flowing
through it changes at a rate of one ampere/second inducing a voltage of
one volt in it and this definition can be presented as
- See more at: http://www.dnatechindia.com/Tutorial/Inductor/Inductor-Inductance-of-a-Coil.html#sthash.cU000h0D.dpuf
Inductance
is the name given to the property of a component that opposes the
change of current flowing through it and even a straight piece of wire
will have some inductance. Inductors do this by generating a
self-induced emf within itself as a result of their changing magnetic
field. When the emf is induced in the same circuit in which the current
is changing this effect is called Self-induction, ( L ) but it is sometimes commonly called back-emf as its polarity is in the opposite direction to the applied voltage.
When the emf is induced into an adjacent component situated within the same magnetic field, the emf is said to be induced by Mutual-induction,
( M ) and mutual induction is the basic operating principal of
transformers, motors, relays etc. Self inductance is a special case of
mutual inductance, and because it is produced within a single isolated
circuit we generally call self-inductance simply, Inductance. The basic unit of inductance is called the Henry, ( H ) after Joseph Henry, but it also has the units of Webers per Ampere (1 H = 1 Wb/A).
Lenz's Law tells us that an induced emf generates a
current in a direction which opposes the change in flux which caused the
emf in the first place, the principal of action and reaction. Then we
can accurately define Inductance as being "a
circuit will have an inductance value of one Henry when an emf of one
volt is induced in the circuit were the current flowing through the
circuit changes at a rate of one ampere/second". In other
words, a coil has an inductance of one Henry when the current flowing
through it changes at a rate of one ampere/second inducing a voltage of
one volt in it and this definition can be presented as
- See more at: http://www.dnatechindia.com/Tutorial/Inductor/Inductor-Inductance-of-a-Coil.html#sthash.cU000h0D.dpuf
Inductance
is the name given to the property of a component that opposes the
change of current flowing through it and even a straight piece of wire
will have some inductance. Inductors do this by generating a
self-induced emf within itself as a result of their changing magnetic
field. When the emf is induced in the same circuit in which the current
is changing this effect is called Self-induction, ( L ) but it is sometimes commonly called back-emf as its polarity is in the opposite direction to the applied voltage.
When the emf is induced into an adjacent component situated within the same magnetic field, the emf is said to be induced by Mutual-induction,
( M ) and mutual induction is the basic operating principal of
transformers, motors, relays etc. Self inductance is a special case of
mutual inductance, and because it is produced within a single isolated
circuit we generally call self-inductance simply, Inductance. The basic unit of inductance is called the Henry, ( H ) after Joseph Henry, but it also has the units of Webers per Ampere (1 H = 1 Wb/A).
Lenz's Law tells us that an induced emf generates a
current in a direction which opposes the change in flux which caused the
emf in the first place, the principal of action and reaction. Then we
can accurately define Inductance as being "a
circuit will have an inductance value of one Henry when an emf of one
volt is induced in the circuit were the current flowing through the
circuit changes at a rate of one ampere/second". In other
words, a coil has an inductance of one Henry when the current flowing
through it changes at a rate of one ampere/second inducing a voltage of
one volt in it and this definition can be presented as
- See more at: http://www.dnatechindia.com/Tutorial/Inductor/Inductor-Inductance-of-a-Coil.html#sthash.cU000h0D.dpuf
Inductance
Inductance
is the name given to the property of a component that opposes the
change of current flowing through it and even a straight piece of wire
will have some inductance. Inductors do this by generating a
self-induced emf within itself as a result of their changing magnetic
field. When the emf is induced in the same circuit in which the current
is changing this effect is called Self-induction, ( L ) but it is sometimes commonly called back-emf as its polarity is in the opposite direction to the applied voltage.
When the emf is induced into an adjacent component situated within the same magnetic field, the emf is said to be induced by Mutual-induction,
( M ) and mutual induction is the basic operating principal of
transformers, motors, relays etc. Self inductance is a special case of
mutual inductance, and because it is produced within a single isolated
circuit we generally call self-inductance simply, Inductance. The basic unit of inductance is called the Henry, ( H ) after Joseph Henry, but it also has the units of Webers per Ampere (1 H = 1 Wb/A).
Lenz's Law tells us that an induced emf generates a
current in a direction which opposes the change in flux which caused the
emf in the first place, the principal of action and reaction. Then we
can accurately define Inductance as being "a
circuit will have an inductance value of one Henry when an emf of one
volt is induced in the circuit were the current flowing through the
circuit changes at a rate of one ampere/second". In other
words, a coil has an inductance of one Henry when the current flowing
through it changes at a rate of one ampere/second inducing a voltage of
one volt in it and this definition can be presented as:
- See more at: http://www.dnatechindia.com/Tutorial/Inductor/Inductor-Inductance-of-a-Coil.html#sthash.cU000h0D.dpuf